Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Li-Ping Zhang, Long-Guan Zhu* and Guo-Qiang Cai

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
H -atom completeness 88%
Disorder in main residue
R factor $=0.050$
$w R$ factor $=0.145$
Data-to-parameter ratio $=11.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

cis-Diaquabis(1,10-phenanthroline)manganese(II) 4-sulfonatobenzoate 6.5-hydrate

In the title complex salt, $\left[\mathrm{Mn}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)$.$6.5 \mathrm{H}_{2} \mathrm{O}$, the coordination geometry about the $\mathrm{Mn}^{\mathrm{II}}$ atom is distorted octahedral, defined by four N atoms from two 1,10phenanthroline ligands and two O atoms from two water molecules. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions among cations, anions, and solvent water molecules generate a threedimensional network and enhance the stability of the crystal structure.

Comment

4-Sulfobenzoate metal complexes exhibit interesting coordination modes and structural topologies, for example, cyclic dimers (Fan et al., 2004; Fan et al., 2005; Zhang \& Zhu, 2005a), a monodentate $4,4^{\prime}$-bipyridine metal complex (Zhang \& Zhu, $2005 b$) and a seven-coordinate manganese complex (Zhang \& Zhu, 2005c). In our previous work we successfully observed the conversion reaction of an air-sensitive complex to an airstable complex and reported the crystal structure of the airstable complex (Zhang \& Zhu, 2005d). In the conversion process, the fully deprotonated 4 -sulfobenzoate anion was protonated. Here, we present the structure of the title airsensitive 4-sulfobenzoate manganese(II) complex, (I).

Complex (I) consists of an $\left[\mathrm{Mn}(\text { phen })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ cation (phen is 1,10 -phenanthroline), a 4 -sulfobenzoate anion and water molecules (Fig. 1 and Table 1). In the cation, the coordination geometry about the $\mathrm{Mn}^{\mathrm{II}}$ atom is best considered as distorted octahedral, defined by four N donors from two phen ligands and two O atoms of two cis-arranged water molecules. The $\left[\mathrm{Mn}(\text { phen })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ cation can be found in several previously reported complexes (Geraghty et al., 1998; Marek et al., 2003; Zhang et al., 2003; Zheng et al., 2001), with a similar coordination geometry.

In the crystal structure of $(\mathrm{I}), \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions between anions and solvent water molecules generate a three-dimensional architecture. The cations inter-

Received 26 September 2005 Accepted 10 November 2005 Online 19 November 2005
act with this anionic three-dimensional network via hydrogen bonds to form a host-guest assembly (Table 2).

Experimental

A mixture of manganese(II) sulfate monohydrate $(0.085 \mathrm{~g}$, $0.49 \mathrm{mmol})$, potassium hydrogen 4 -sulfobenzoate ($0.120 \mathrm{~g}, 0.5 \mathrm{mmol}$), 1,10-phenanthroline ($0.098 \mathrm{~g}, 0.5 \mathrm{mmol}$) and water (15 ml) was heated at 423 K for 26 h in a 30 ml Teflon-lined stainless steel autoclave. After cooling, a yellow solution was obtained and this was allowed to evaporate. After 1 d , pale-yellow crystals of (I) were formed and these were filtered off. The crystal used for X-ray analysis was coated in oil.

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)$-$6.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=769.15$
Triclinic, $P \overline{1}$
$a=12.4689$ (10) Å
$b=13.0731$ (11) \AA
$c=13.3104$ (11) \AA
$\alpha=106.408(2)^{\circ}$
$\beta=101.908(1)^{\circ}$
$\gamma=114.895(1)^{\circ}$
$V=1751.1(3) \AA^{3}$
Data collection
Bruker APEX area-detector diffractometer

6101 independent reflections 5105 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.059$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-14 \rightarrow 14$
$k=-15 \rightarrow 13$
$l=-15 \rightarrow 13$
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\text {min }}=0.782, T_{\text {max }}=0.789$
8888 measured reflections
$Z=2$
$D_{x}=1.46 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4511 reflections
$\theta=2.5-28.2^{\circ}$
$\mu=0.51 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, pale yellow
$0.51 \times 0.50 \times 0.49 \mathrm{~mm}$

Figure 1
The asymmetric unit of (I). Displacement ellipsoids are drawn at the 40% probability level. H atoms, and the minor components of the disordered sulfonate and water molecules, have been omitted for clarity.

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0852 P)^{2}\right.} \\
&\quad+0.1951 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.65 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.48 \mathrm{e}^{-3}
\end{aligned}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.145$
$S=1.09$
6101 reflections
544 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

Mn1-O1	$2.116(2)$	$\mathrm{Mn} 1-\mathrm{N} 2$	$2.303(2)$
$\mathrm{Mn} 1-\mathrm{O} 2$	$2.1570(19)$	$\mathrm{Mn} 1-\mathrm{N} 3$	$2.284(2)$
$\mathrm{Mn} 1-\mathrm{N} 1$	$2.269(2)$	$\mathrm{Mn} 1-\mathrm{N} 4$	$2.278(2)$
			$89.43(8)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 2$	$84.02(8)$	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 3$	$72.99(9)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 1$	$110.56(9)$	$\mathrm{N} 4-\mathrm{Mn} 1-\mathrm{N} 3$	$94.97(9)$
$\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{N} 1$	$93.02(9)$	$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 2$	$164.63(8)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 4$	$91.09(9)$	$\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{N} 2$	$72.91(8)$
$\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{N} 4$	$105.67(8)$	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 2$	$89.67(8)$
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 4$	$152.91(9)$	$\mathrm{N} 4-\mathrm{Mn} 1-\mathrm{N} 2$	$100.04(8)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 3$	$157.91(9)$	$\mathrm{N} 3-\mathrm{Mn} 1-\mathrm{N} 2$	
$\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{N} 3$	$85.67(8)$		

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots 7^{7{ }^{\text {i }}}$	0.84 (4)	1.69 (2)	2.521 (11)	168 (4)
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{O} 7^{\mathrm{i}}$	0.84 (4)	1.98 (1)	2.821 (8)	175 (3)
$\mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{O} 8^{\mathrm{i}}$	0.85 (4)	1.83 (4)	2.674 (3)	175 (3)
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\text {ii }}$	0.85 (3)	1.89 (2)	2.704 (3)	162 (3)
$\mathrm{O} 2-\mathrm{H} 2 B \cdots \mathrm{O} 3^{\text {iii }}$	0.84 (3)	1.89 (3)	2.713 (3)	166 (3)
$\mathrm{O} 8-\mathrm{H} 8 B \cdots \mathrm{O}^{\text {iv }}$	0.85 (3)	1.89 (2)	2.721 (3)	165 (3)
$\mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O} 9$	0.85 (4)	1.96 (4)	2.804 (4)	174 (4)
$\mathrm{O} 9-\mathrm{H} 9 A \cdots \mathrm{O}$	0.87 (3)	1.81 (1)	2.641 (5)	158 (3)
O9-H9A . ${ }^{\text {O }}{ }^{\prime}$	0.87 (3)	2.21 (2)	3.066 (16)	165 (4)
$\mathrm{O} 9-\mathrm{H} 9 B \cdots \mathrm{O}^{\text {v }}$	0.85 (2)	1.97 (1)	2.781 (7)	161 (3)
$\mathrm{O} 10-\mathrm{H} 10 A \cdots \mathrm{O} 4$	0.86 (3)	1.99 (3)	2.846 (4)	178 (4)
$\mathrm{O} 10-\mathrm{H} 10 B \cdots \mathrm{O}^{\text {vi }}$	0.85 (4)	1.95 (2)	2.762 (5)	158 (4)
$\mathrm{O} 10-\mathrm{H} 10 \mathrm{~B} \cdots \mathrm{O}^{\text {vi }}$	0.85 (4)	2.07 (2)	2.853 (10)	154 (4)
$\mathrm{O} 13-\mathrm{H} 13 A \cdots \mathrm{O} 9^{\text {vii }}$	0.85 (1)	2.45 (7)	2.964 (12)	120 (7)

Symmetry codes: (i) $x+1, y, z$; (ii) $x+1, y+1, z$; (iii) $-x+1,-y+1,-z+1$; (iv)
$x, y+1, z ;(\mathrm{v})-x+1,-y+2,-z+2$; (vi) $-x+1,-y+1,-z+2$; (vii) $x, y-1, z$.
All aromatic H atoms were positioned geometrically and refined as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The water H atoms were located in difference Fourier maps and refined with a distance restraint of $\mathrm{O}-\mathrm{H}=0.85$ (1) \AA and a fixed isotropic displacement parameter of $U_{\text {iso }}(\mathrm{H})=0.08 \AA^{2}$. The sulfonate O atoms are disordered over two positions in the ratio 0.610 (13):0.390 (13), for atoms O5/O6/O7 and $\mathrm{O}^{\prime} / \mathrm{O6}^{\prime} / \mathrm{O}^{\prime}$, respectively. The water atoms O12 and O14 are disordered over two sites in the ratios 0.587 (12):0.413 (12) for O12 and O12', and 0.663 (18):0.337 (18) for O 14 and O14', respectively. The occupancy of atom O13 was initially refined to 0.76 (1), and was fixed at 0.50 in the final cycles of refinement.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

metal-organic papers

The authors thank the National Natural Science Foundation of China (grant No. 50073019).

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Fan, S.-R., Xiao, H.-P., Zhang, L.-P. \& Zhu, L.-G. (2004). Acta Cryst. E60, m1833-m1835.
Fan, S.-R., Zhang, L.-P., Xiao, H.-P., Cai, G.-Q. \& Zhu, L.-G. (2005). Z. Kristallogr. New Cryst. Struct. 220, 69-70.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Geraghty, M., McCann, M., Casey, M. T., Curran, M., Devereux, M., McKee, V. \& McCrea, J. (1998). Inorg. Chim. Acta, 277, 257-262.
Marek, J., Travnicek, Z. \& Kopel, P. (2003). Acta Cryst. C59, m429-m431.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, L.-P. \& Zhu, L.-G. (2005a). Acta Cryst. E61, m1439-m1440.
Zhang, L.-P. \& Zhu, L.-G. (2005b). Acta Cryst. E61, m1768-m1770.
Zhang, L.-P. \& Zhu, L.-G. (2005c). Acta Cryst. E61, m1036-m1038.
Zhang, L.-P. \& Zhu, L.-G. (2005d). Acta Cryst. E61, m705-m707.
Zhang, X.-F., Huang, D.-G., Chen, F., Chen, C.-N. \& Liu, Q.-T. (2003). Chin. J. Struct. Chem. 22, 525-528.
Zheng, Y.-Q., Lin, J.-L. \& Sun. J. (2001). Z. Anorg. Allg. Chem. 627, 10591065.

